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Abstract

When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic
neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in
gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to
cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then
the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this
here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both
variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in
all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression
of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific
expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear
lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing
to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression
evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.
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Introduction
Work on the evolution of gene expression has commonly
been gene centric, concentrating on, for example, changes
in the promoter elements of a given gene (Hammock and
Young 2002; Carninci et al. 2006; Tirosh et al. 2006; Wray 2007;
Tirosh et al. 2009; Wang and Rekaya 2009; Molineris et al.
2011; Hornung et al. 2012; Rosin et al. 2012; Wittkopp and
Kalay 2012; Forrest et al. 2014; Yang et al. 2014). In such a
model, changes in the promoter change the expression of the
gene controlled by that promoter but nothing else (baring
downstream effects of, for example, up- or downregulation of
a transcription factor). But are genes autonomous in their
evolution in the sense that the change in expression of a
focal gene has no effects on its immediate genomic neigh-
bors? In contrast to such an autonomous view of gene
expression evolution, when examining profiles of gene expres-
sion across chromosomes, it is now evident that in eukaryotes
genes of similar expression tend to cluster (Cho et al. 1998;
Cohen et al. 2000; Caron et al. 2001; Reik and Walter 2001;
Blumenthal et al. 2002; Hurst et al. 2002; Roy et al. 2002;
Spellman and Rubin 2002; Birnbaum et al. 2003; Lee and
Sonnhammer 2003; Lercher et al. 2003; Versteeg et al. 2003;
Khaitovich et al. 2004; Stolc et al. 2004; Williams and Bowles
2004; Denver et al. 2005; Liu et al. 2005; Mijalski et al. 2005;
Oliver and Misteli 2005; Singer et al. 2005; Sproul et al. 2005;
Lercher and Hurst 2006; S�emon and Duret 2006; Purmann
et al. 2007; Ebisuya et al. 2008; Nutzmann and Osbourn 2014).
This is seen both at a fine scale and a more gross

chromosomal scale (Cohen et al. 2000; Caron et al. 2001;
Lercher et al. 2003; Pal and Hurst 2003; Williams and
Bowles 2004; Purmann et al. 2007; Michalak 2008; Woo and
Li 2011). On a fine scale, neighboring genes tend to be coex-
pressed more than expected by chance across multiple taxa
(Blumenthal et al. 2002; Boutanaev et al. 2002; Roy et al. 2002;
Lercher et al. 2003; Fukuoka et al. 2004; Williams and Bowles
2004; Purmann et al. 2007; Davila Lopez et al. 2010), the effect
being most pronounced often for genes in a bidirectional
orientation, in which promoters sit in close proximity to
each other (Cohen et al. 2000; Williams and Bowles 2004;
Davila Lopez et al. 2010; Wei et al. 2011; Uesaka et al. 2014).
On a more gross scale, genes expressed in most tissues
(housekeeping genes) and highly expressed genes tend to
cluster in domains corresponding to tens of genes (Caron
et al. 2001; Lercher et al. 2002; Versteeg et al. 2003; Weber
and Hurst 2011).

Although genes controlled by the same transcription fac-
tors are themselves not randomly organized, at least not in
yeast (K�epès 2003; Janga et al. 2008), in large part broad and
narrow span clustering tendencies probably reflect chromatin
dynamics rather than shared transcription factors (Grunstein
1997; Cohen et al. 2000; S�emon and Duret 2006; Batada et al.
2007; Li et al. 2007). In yeast, for example, controlling for
transcription factor similarity neighboring genes still show
striking similarity in coexpression (Batada et al. 2007).
Similarly, in mammals, incorporation of transgenes into chro-
mosomes demonstrates that these adopt the expression
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profile of neighbors within a broad span (Gierman et al. 2007;
Symmons et al. 2014). In both yeast and mammals, the upre-
gulation of one gene causes time-lagged ripples of gene ex-
pression that correspond to changes in chromatin state
(Cohen et al. 2000; Janicki et al. 2004; Ebisuya et al. 2008). In
humans these ripple domains are around 100 kb in size
(Ebisuya et al. 2008). Whether the fact of clusters of gene
expression implies selection for such clusters is unresolved.
In yeast, the most highly coexpressed gene pairs tend to be
more similar in functionality and more commonly conserved
as a pair (Hurst et al. 2002; Poyatos and Hurst 2007). However,
results in other lineages are less decisive (Lee and
Sonnhammer 2003, 2004; Liao and Zhang 2008; Weber and
Hurst 2011).

Here we ask whether genes are autonomous in their expres-
sion evolution. To this end we consider RNASeq data for sev-
eral tissues in male and female primates. Reconstructing the
human–chimp ancestral state permits us to estimate the
extent of expression change between humans and this ances-
tor and represent this as a Z score that factors in both current
variation in expression between replicates (expression or mea-
surement noise) and uncertainty in ancestral state reconstruc-
tion. We then consider the extent to which neighboring genes
show correlated Z scores. Under the null that genes are auton-
omous in their expression evolution the correlation in Z score
between neighbors should be zero. In addition, by considering
the residuals of the orthogonal regression of Z for a gene in a
given tissue in males against the same in females we can define
the degree of sex bias in expression change. We can thus in
turn ask whether this too shows evidence of autonomy.

Results

Neighboring Genes Are Correlated in the Expression
Change in All Tissues in Both Sexes

So as to gauge what the possible mechanisms might be, we
considered several methods to ask whether the expression
change of a focal gene (Z) is correlated with that of its neigh-
bors. In the first instance we consider for each gene (regardless
of which strand they reside on) the nearest neighbor down-
stream of the focal gene (downstream here is by reference to
the published chromosomal strand not to the orientation of
the gene), allowing only those instances where the intergene
distance is less than 100 kb, this being the estimated size of
the ripple effect (Ebisuya et al. 2008), wherein upregulation of
one gene causes a time-lagged upregulation of the neighbors
(the ripple). In the second instance we consider the correla-
tion between a focal gene and its nearest pair of neighbors,
one upstream one downstream, assuming both were within
100 kb (this is comparable to the first method but could be
less noisy). In this instance we take the mean Z of the neigh-
bors. In the third, we considered for each focal gene the mean
Z of all neighbors within 100 kb. While the first method might
be detecting immediate and local interactions between any
given gene pair (e.g., mediated by bidirectional promoters),
the latter most likely recovers broader scale chromatin
effects. Under the premise that we must be missing the
site of expression, we excluded genes with Z (prior to

modification—see Materials and Methods) of zero owing to
lack of expression in a given tissue. In the first and second
cases we consider only nonoverlapping genes. For the third
case, if the focal gene overlaps any of its adjacent neighbors, it
is removed from the analysis; but if there are nonfocal over-
lapping genes in the neighborhood, they are included.

Strikingly we find that for all tissues in both sexes, all
analyses report a highly significant positive correlation
between Z of focal genes and Z of neighbors (fig. 1,
tables 1–3). The correlation stays highly significant and
in positive direction if one is to consider fold change since
ancestor instead of Z score (supplementary table S1,
Supplementary Material online). Note too that our cor-
rection of Z to a median of zero is here irrelevant as our
statistics are based on rank ordering. These results
strongly supports the hypothesis that gene evolution is
nonautonomous, or at least that it occurs on a cluster-by-
cluster basis. We note too that our Z scores accord well
with the metric to define significantly changed expression
employed by Brawand et al (2011) (supplementary fig. S1
and table S2, Supplementary Material online).

While the earlier results provide evidence of clustering it
does not identify clusters nor does it suggest their dimen-
sion. As alternative means to test for clustering and to
identify unusually large clusters, we consider the number
of switches in Z score as one runs along a chromosome. We
represent all genes as having a positive, negative, or zero Z
score. Those with a zero we consider to be too indecisive to
be permitted for this test so are excluded. We then con-
sider, running down each chromosome, the number and
lengths of spans with uniform Z sign. That is we ask about
the size of runs of positive and negative Z scores (Z+ and
Z� we then consider as states + and �). To address
whether there are fewer but larger runs than expected
(clustering) we ask about the number of edges of runs. A
series +++–+++ for example has two edges, a + to – switch
and a – to + switch. We then compare the observed
genomic number of switches to the number expected
under a null of random ordering. The null is derived
from randomisation of character states (i.e., loci) within
each chromosome, thus preserving the absolute number
of + and – genes on each chromosome. For all tissues in
both sexes, we observe that the observed number of clus-
ters is lower than expected; hence, their length is greater
than expected (P < 0.0001 in all cases). Put differently,
longer runs of uniform expression change are more com-
monly observed than expected by chance and shorter runs
are less common (fig. 2). The largest clusters even by this
conservative definition (a single gene of opposite sign
breaks a cluster) run to tens of genes. For illustration of
some very large clusters, see supplementary figure S2a and
b, Supplementary Material online. This result provides fur-
ther evidence that our core result, the clustering of genes
showing similar change in expression is largely immune to
assumption about the precise metric of change, it being
seen with Z metric (tables 1–3), fold change (supplemen-
tary table S1, Supplementary Material online), and digital
parametrization (fig. 2).
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Weak Evidence Only That Gene Orientation Is
Relevant to Correlated Change in Gene Expression

When considering the correlation between a focal gene and
the nearest neighbour, we ignored any effects of orientation
between the neighbor and the focal gene. Prior work has
suggested that genes in divergent orientation may be partic-
ular in the extent of coupling in their expression (Wright et al.
1995; Cho et al. 1998; Cohen et al. 2000; Kruglyak and Tang
2000; Hurst et al. 2002; Trinklein et al. 2004; Williams and
Bowles 2004; Woo and Li 2011; Wakano et al. 2012). This
may be for no better reason that genes in divergent orienta-
tion will have a lower distance between their promoters

(Wakano et al. 2012), all else being equal. Genes sharing bidi-
rectional promoters are, under this model, the most highly
coupled. Do we then see any effect of the correlation between
Z scores as a function of orientation?

For every focal gene and its unique nearest downstream
neighbour, we consider the two to be in one of three orien-
tations: divergent (<–4 ), convergent (-4<-) and coor-
iented (-4 -4 or <-<-). For each of the three classes we
calculated the Spearman’s � value for the correlation of
Z scores between the neighbors, this being repeated for
each tissue in each sex (table 4). Very weakly suggestive of a
greater coordination of genes in divergent orientation,
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FIG. 1. Relationship between Z of a focal gene and Z of the nearest downstream neighbor for six male tissues. In this instance we consider all genes are
nearest downstream neighbors if the distance between the start codons is <100 kb. This slightly contrasts with data in table 1, where the distance is
defined as minimum distance between gene bodies. Trends are robust to alternative definitions. Data are split into equal sized bins (of 500 genes)
defined after rank ordering with respect to Z score of the focal gene. The value on the X axis represents the mean Z of the genes in that bin. The value of
the Y axis indicates the mean (�SEM) for the relevant flanking genes. The presented statistics are from Spearman correlation on raw data.
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we find that in 6 of 10 incidences the divergent orientation
genes have the highest � value (these being male liver, brain
and testis, and female kidney, heart, and cerebellum).
Assuming that the divergent orientation should have the
highest � value one-third of the time, a 6:4 split is not signif-
icant (two-tailed, binomial test P = 0.094; one-tailed binomial
test P = 0.076).

To check whether the three Spearman’s � values (for each
tissue for each sex) differed from � score of a randomly se-
lected subset of the same size, we performed Monte Carlo
randomizations. Each simulation extracted the appropriate
but randomly selected number of gene neighbors using the
same underlying data (i.e., same tissue, same sex). Each sim-
ulation was repeated 10,000 times. The � score of each
random sample was calculated and compared with that ob-
served in the simulants to determine P (Materials and
Methods). We find that in two incidences (male testis and
female cerebellum) genes in divergent orientation have a sig-
nificantly higher (P< 0.05) correlation in the Z scores than
expected by chance (table 5). The effects are, however,

marginal (0.01< P< 0.05) and not robust to Bonferroni
correction.

Prior evidence suggests that bidirectional orientation may
have its most profound influence at the sub 1 kb scale (Hurst
et al. 2002; Li et al. 2006; Franck et al. 2008), although another
study found a marginally lower correlation among divergent
genes at 1 kb distance (Takai and Jones 2004). Unfortunately
there are few genes in the sample at such proximity.
Nonetheless we can repeat the analyses above on this more
limited subset. We observe that in five incidences (male brain,
male kidney, male liver, female cerebellum, female kidney)
divergent orientation records the highest � value, again not
a significant difference (table 6). Weak significance from
Monte Carlo simulations is observed in only one case (male
liver), again not robust to Bonferroni correction (table 7). We
conclude that we see weak, at best, evidence that gene ori-
entation has an influence on the degree of correlated expres-
sion change.

Overlapping Genes Are the Most Strongly Positively
Correlated in Expression Change

Thus far we excluded from consideration overlapping genes.
A priori we might expect these to behave differently, not least
because simultaneous expression of both genes might lead to
transcriptional interference (Noguchi et al. 1994; Prescott and
Proudfoot 2002; Osato et al. 2007). Hence upregulation of one
might force downregulation of the other, if only through
forcing premature transcriptional termination. Alternatively,
upregulation of one might make the chromatin environment
of the promoter of the neighbor even more likely to be ac-
cessible, so proving an even stronger signal of nonautono-
mous evolution.

While the original data set (Brawand et al. 2011) was spe-
cified as excluding all incidences in which genes overlap
within their protein coding sequence, many overlap in their
full-length transcript. Examining these we find that the near-
est neighbors still show a strong positive correlation in
Z scores (tables 8 and 9). Indeed, in all cases, the correlation
is stronger for the overlapping genes than for the nearest
nonoverlapping neighbor. Assuming each sample to be inde-
pendent, the probability of such agreement is low (binomial
test, P = 0.002). However, all samples are not independent
(male and female expression change correlates—see later).
Thus to evaluate whether the strength of this correlation
was any different to that expected for any pair of nearest
downstream neighbors, we repeatedly extracted from the
larger set of nonoverlapping neighbors a random subset of
the nearest downstream neighbors. The random subsets had
the same number of genes as seen in the overlapping genes’
set. We then asked how often we see a � value as great or
greater than that observed for the overlapping case.
Overlapping genes had consistently stronger correlation
than the nonoverlapping gene sets in all tissues in both
sexes (table 10). These results support the view that close
proximity, possibly owing to a greater likelihood of shared
chromatin environment, is a more important determinant

Table 1. Spearman Correlation between Focal Gene’s Z Score and
Z Score of Its Closest Nonoverlapping Downstream Neighbor.

Tissue Male P Value Male q Female P-Value Female q

Brain 8.71E�07 0.05504 2.81E�08 0.06247

Cerebellum 1.71E�19 0.10246 9.25E�21 0.10539

Kidney 3.97E�126 0.26420 3.37E�07 0.05751

Heart 4.13E�66 0.19308 7.14E�20 0.10423

Liver 5.91E�12 0.07786 NA NA

Testis 6.92E�83 0.21132 NA NA

NOTE.—All statistics are significant after Bonferroni testing.

Table 2. Spearman Correlation between Focal Gene’s Z Score and
Mean of Its Closest Nonoverlapping Neighbors on Both Sides.

Tissue Male P-Value Male q Female P-Value Female q

Brain 2.95E�10 0.08015 8.70E�12 0.08727

Cerebellum 1.96E�31 0.15009 1.51E�33 0.15433

Kidney 1.44E�155 0.33054 6.07E�10 0.07925

Heart 2.03E�86 0.24993 2.16E�28 0.14318

Liver 8.86E�17 0.10676 NA NA

Testis 4.43E�118 0.28520 NA NA

NOTE.—All statistics are significant after Bonferroni testing.

Table 3. Spearman Ranked Correlation of Z Score of Focal Gene
with Mean Z Score of All Its Nonoverlapping Neighboring (within
�100 kb) Genes.

Tissue Male P-value Male q Female P-value Female q

Brain 7.75E�08 0.04780 6.93E�17 0.07465

Cerebellum 8.67E�61 0.14784 1.17E�41 0.12111

Kidney 1.32E�274 0.30926 2.81E�15 0.07078

Heart 8.82E�160 0.23968 2.07E�44 0.12681

Liver 8.51E�26 0.09458 NA NA

Testis 6.27E�187 0.25247 NA NA

NOTE.—All statistics are significant after Bonferroni testing.
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FIG. 2. Numbers of clusters of a given size compared to that expected under a random null. Observed number of clusters including certain number of
genes is shown by red stars, boxplots show variation across number of clusters in 1,000 random sets.
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of coupled gene expression change than is transcriptional
interference or gene orientation.

A Ripple Effect Cannot Explain the Dimensions of the
Expression Change Clusters

Although the earlier more extreme correlation in changes at
very small distances is potentially consistent with the ripple
effect, this same effect suggests that expression clusters
should be of ~100 kb in magnitude (Ebisuya et al. 2008). To
estimate physical cluster size, we consider the strength of the

correlation between genes in their Z score as a function of the
distance between them. We consider all focal genes and the
correlation between Z scores for these genes and the nearest
downstream gene at a minimum of x base pairs away. By
incrementing the minimum distance of x, we can then ask
at what physical distance on average is � between the
focal genes and nearest “neighbors” is less than the mean
� 1.96 SD of 1,000 randomized null sets.

For three tissues (heart, kidney, testes), the data appear to
be relatively noise free, suggesting the span of local correlation
to extend up to tens of megabytes (10–25 MB) (fig. 3a). For

Table 4. Spearman Correlation between Z of Divergent, Convergent, and Cooriented Closest Gene Pairs.

Tissue/Gender Divergent P-Value Divergent q Convergent P-Value Convergent q Cooriented P-Value Cooriented q

Brain/male 0.000474 0.07738 0.105396 0.03449 0.00031 0.05483

Cerebellum/male 1.76E�05 0.09616 2.27E�07 0.11123 7.63E�13 0.11086

Kidney/male 1.76E�35 0.27214 9.33E�30 0.23963 5.83E�78 0.27992

Heart/male 4.52E�18 0.19287 3.26E�16 0.17496 5.52E�42 0.20693

Liver/male 8.23E�07 0.11054 0.008186 0.05694 1.07E�06 0.07485

Testis/male 3.47E�30 0.24745 1.24E-22 0.20458 3.24E-42 0.20261

Brain/female 0.003130 0.06569 0.000440 0.07510 0.00107 0.05010

Cerebellum/female 3.01E-10 0.14002 0.000271 0.07796 1.24E-10 0.09887

Kidney/female 0.004371 0.06349 0.032372 0.04601 0.000205 0.05684

Heart/female 4.75E-09 0.13200 3.77E-06 0.10040 2.52E-11 0.10359

NOTE.—Results significant after Bonferroni testing are highlighted in italic.

Table 5. P-Values of Monte Carlo Simulations Comparing Spearman’s Correlation q Score between Z Score of Focal Gene and Z Score of Its
Downstream Neighbor across Divergent, Convergent, and Cooriented Subsets against q of a Randomly Selected Set of Genes of the Same Size as
Those Subsets.

Tissue Divergent Male
P-Value

Convergent Male
P-Value

Cooriented Male
P-Value

Divergent Female
P-Value

Convergent Female
P-Value

Cooriented Female
P-Value

Brain 0.12059 0.87421 0.86861 0.37086 0.20748 0.20998

Cerebellum 0.70893 0.40776 0.40526 0.03330 0.91901 0.92151

Kidney 0.41026 0.94881 0.95150 0.36286 0.70813 0.71763

Heart 0.55744 0.86571 0.86821 0.12109 0.68713 0.67243

Liver 0.05359 0.88301 0.88571 NA NA NA

Testis 0.03550 0.72293 0.71803 NA NA NA

NOTE.—If the number of genes in divergent orientation, for example, after removing zero Z scores in a specific tissue and sex is shown by tsND and Spearman’s correlation’s �
score between those focal genes and their divergent downstream is shown by ts�. Then � score of 10,000 random sets of linked gene pairs of tsND size, selected from pool of all
genes in this study regardless of their orientation, is calculated and compared with ts� in corresponding tissue/gender. If the number of random sets with their � great or greater
than ts� is shown by M, Monte Carlo P-values are then calculated as (M+1)/10,001. No observations are significant after Bonferroni testing.

Table 6. Spearman Correlation between Z Score of Focal Gene and Z Score of Its Closest Downstream Neighbor across Divergent, Convergent,
and Cooriented Closest Gene Pairs Which Are Closer than 1 kb.

Tissue/Gender Divergent P-value Divergent q Convergent P-value Convergent q Cooriented P-value Cooriented q

Brain/male 0.10085 0.08288 0.81912 0.01280 0.95651 �0.00366

Cerebellum/male 0.01006 0.13001 0.01738 0.13288 0.02453 0.15090

Kidney/male 7.07E�16 0.39189 1.30E-08 0.31211 0.00327 0.19567

Heart/male 7.80E-06 0.22392 7.79E-09 0.31661 0.00752 0.17813

Liver/male 0.00044 0.17669 0.20270 0.07196 0.69872 0.02606

Testis/male 1.02E-11 0.33586 1.49E-10 0.34886 0.04807 0.13197

Brain/female 0.36058 0.04629 0.86790 �0.00929 0.43382 0.05267

Cerebellum/female 1.32E-05 0.21838 0.00461 0.15838 0.05900 0.12635

Kidney/female 0.12010 0.07853 0.64196 �0.02613 0.72420 �0.0237

Heart/female 0.00250 0.15248 0.00302 0.16604 0.02574 0.14933

NOTE.—Results significant after Bonferroni testing are highlighted in italic.

1753

Correlated Evolution in Gene Expression . doi:10.1093/molbev/msv053 MBE
 at D

eutsche Z
entralbibliothek fuer M

edizin on O
ctober 27, 2015

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/


the remaining three, brain suggests a much more limited
domain, while cerebellum and liver are consistent with ~10
MB span. Looking in more details at trends under 1 MB from
the focal genes (fig. 3b), we observe that all tissues report the
local correlation of Z to be most profound under 100 kb, with
brain tissue indeed, suggesting this to be the upper limit. The
discrepancy between brain and the other tissues might, we
suggest be owing to heterogeneity in sampling procedures
and intrinsic heterogeneity of brain tissue. A ripple effect
(Ebisuya et al. 2008) that extends over ~100 kb might be
able to explain the intensity of the signal at such short
range (fig. 3b) (notice the nonlinear trends seen in 3b and
the extent to which the left most data point in 3a appears as
an outlier). The ripple effect appears, however, to be incom-
patible with the much longer-range effects as these extend in
many cases well beyond the 100 kb limit of the ripple effect.

Changes in Gene Expression Accord with Lamina
Domains and 5-Hydroxymethylcytosine

Do the genes changing expression accord with any chromatin
signatures? Nuclear compartmentalization and lamina-asso-
ciated chromatin domains (LADs) in particular have been
shown to be involved in regulating genes in Metazoan
(Reddy et al. 2008; Van Bortle and Corces 2013). Moreover,
recent analysis of gene disregulation in Downs syndrome sug-
gested that LADs represent a level of expression organization
in the human genome (Letourneau et al. 2014). LADs have
also been shown to associate with low gene expression
(Guelen et al. 2008). Hence LADs would provide a good mea-
sure for investigating chromatin level regulation’s involve-
ment in evolution of gene expression. Using a high-
resolution map of LADs in fibroblast (Guelen et al. 2008),
we find that in all six tissues genes residing in putative
lamina domains tend to have lower Z scores than those
not in lamina domains (fig. 4 [before multitest correction,
Mann–Whitney U test P< 10�9 except brain
P = 4� 10�4]). Thus increases in expression level tend to be
outside of lamina domains.

5-Hydroxymethyl cytosine (hmC) and 5 methylcytosine
(mC) are also involved in chromatin level regulation of
gene expression through recruiting chromatin modifiers
(Mellen et al. 2012; Spruijt et al. 2013). Recent evidence also
indicates that gene activity is associated with hmC on the
coding strand (Wen et al. 2014). Inactive genes or noncoding

Table 7. P-Values of Monte Carlo Simulation Comparing Spearman’s Correlation q Score between Focal Gene and Its Downstream Neighbor
across Divergent, Convergent, and Coordinated Subsets to a Randomly Selected Subset of the Same Size for Gene Pairs Closer than 1 kb.

Tissue Divergent Male
P-Value

Convergent Male
P-Value

Cooriented Male
P-Value

Divergent Female
P-Value

Convergent Female
P-Value

Cooriented Female
P-Value

Brain 0.13399 0.71823 0.72053 0.33787 0.79582 0.79852

Cerebellum 0.64264 0.60364 0.59444 0.33907 0.85431 0.84622

Kidney 0.17848 0.87671 0.87581 0.07129 0.84862 0.84202

Heart 0.91831 0.15938 0.15298 0.78032 0.62664 0.63754

Liver 0.02850 0.76262 0.75932 NA NA NA

Testis 0.57334 0.42326 0.43336 NA NA NA

NOTE.—Monte Carlo simulation’s steps and number of repetition are the same as explained in table 5. No observation is significant after Bonferroni testing.

Table 8. Spearman Correlation between Focal Gene’s Z Scores and Z
of Its Overlapping Downstream Neighbor on the Opposite Strand.

Tissue Male P-value Male q Female P-value Female q

Brain 0.00392 0.10783* 0.00368 0.10886*

Cerebellum 8.37E�14 0.27613* 8.45E�06 0.16696*

Kidney 2.75E�26 0.38295* 0.01655 0.08992*

Heart 4.90E�15 0.28986* 1.18E�06 0.18234*

Liver 0.00019 0.13979* NA NA

Testis <2.2E�16 0.3942* NA NA

NOTE.—Those incidences marked with an asterisk have a higher correlation than
seen in the comparable nonoverlapping case (shown in table 1). All observations are
significant after Bonferroni testing. As the underlying data are strand-specific tran-
scriptomics, employing overlapping sequence from opposite strands obviates prob-
lems with mismapping, causing artifactual signals of high correlation.

Table 9. Spearman Correlation between Focal Gene’s Z Scores and
Mean of Its Closest Up and Downstream Neighbors, at Least One of
Which Overlaps the Focal Gene.

Tissue Male P-Value Male q Female P-value Female q

Brain 0.00013 0.11001* 0.0002 0.10724*

Cerebellum 1.18E�24 0.29169* 1.52E�11 0.19365*

Kidney <2.2E�16 0.41596* 0.00126 0.09303*

Heart 2.93E�29 0.31778* 4.58E�13 0.20841*

Liver 7.60E�07 0.14236* NA NA

Testis <2.2E�16 0.4018* NA NA

NOTE.—Those incidences marked with an asterisk have a higher correlation than
seen in the comparable nonoverlapping case (shown in table 2). All observations are
significant after Bonferroni testing.

Table 10. Monte Carlo Simulation of Overlapping Genes’ Z.

Tissue Male P-Value Female P-Value

Brain 0.005999 0.0095

Cerebellum 0.000099 0.003

Kidney 0.000099 0.0132

Heart 0.000499 0.0004

Liver 0.007399 NA

Testis 0.000099 NA

NOTE.—Comparing Spearman correlation’s � score of overlapping genes against ran-
domly selected set of gene pairs of the same size over 1,000 repetitions. The number
of incidents when � of randomly selected set is equal or higher than � in over-
lapping set was counted to calculate empirical P-values. All observations are signif-
icant after Bonferroni testing.
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FIG. 3. Correlation between Z of each focal gene and Z of nearest downstream neighbor more than a given minimum physical distance away. (a) We
plot data considering increments of minimum distance 1 MB at a time up to a maximum of 30 MB. (b) We consider 10-kb increments up to a
maximum of 1 MB. For each focal gene we extract the nearest neighbor downstream that is at least the distance x away, x being the units on the x axis.
From a list of focal and neighbor Z scores, we consider then the correlation between these. Correlations significant at the 0.05 level are shown in red,
otherwise in blue. The blue horizontal lines indicate 1.96 SD limits determined by randomization (which should in principle correspond with the P from
Spearman’s �), with the black line indicating mean of null expectation from randomization (which should be around zero).
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strands by contrast tend to be enriched in mC (Dahl et al.
2011). Do we see then any correspondence between hmC,
mC (in cortex samples), and Z? Employing base pair resolu-
tion data (Wen et al. 2014), we indeed observe that Z (for
brain) is positively correlated with hmC (Spearman correla-
tion: �= 0.17, P< 10�107) and negatively correlated with mC
(Spearman correlation: �=�0.07, P< 10�18).

A priori we might expect that genes associated with pos-
itive Z scores are associated with activating chromatin marks
like H3K4me3 (Santos-Rosa et al. 2002; Sims et al. 2003;
Martin and Zhang 2005; Greer and Shi 2012). We approach
this issue using data from cardiac fibroblast, cardiac myocyte
(muscle cells in heart), and astrocytes, chromatin data for
which is available. Astrocytes are the most abundant cells
in the brain and cerebellum (Tower and Young 1973; Chen

and Swanson 2003; Tsai et al. 2012), hence would provide a
defendable approximation for histone methylation profile of
the whole organ. As expected Z score positive genes differ
from Z score negative ones in H3K4me3 (table 11).

Given the earlier result, we might in addition expect that
for genes with relatively extreme changes in Z the correspon-
dence with H3K4me3 marks should be more pronounced. To
address this we consider the subset of genes whose Z score is
greater than or equal to 1 or less than or equal to �1.
Unexpectedly, these genes show no significant difference in
their activating histone mark methylation in two instances
and only a marginal effect (astrocytes) in one (table 12).

The points mentioned earlier shows association of
H3K4me3 with elevated expression in human lineage but
does not elucidate whether relative gain or depletion of

Table 11. Number of Positive and Negative Z Score Genes Overlapping at Least One H3K4me3 Peak.

Tissue Number of
Genes

Number
of Z+

Number
of Z-

AVG
(Number of Z+
with H3K4me3)

Number of
Expected Z+

AVG
(Number of Z�
with H3K4me3)

Number of
Expected Z-

v2 P-Value

Astrocytes-cerebellar 12,418 5,923 6,495 5,108 4,812.38 4,981.5 5,277.12 3.806E�09

Cardiac fibroblasts 12,098 5,605 6,493 4,702 4,548.21 5,115 5,268.78 0.00185

Cardiac myocytes 12,098 5,605 6,493 4,920.5 4,759.71 5,353 5,513.79 0.00146

Table 12. Number of Highly Positive and Negative Z Score Genes Overlapping at Least One H3K4me3 Peak.

Tissue Number
of Genes

Number
of Z+

Number
of Z-

AVG
(Number of Z+
with H3K4me3)

Number of
Expected Z+

AVG
(Number of Z�
with H3K4me3)

Number of
Expected Z�

v2 P-Value

astrocytes-Cerebellar 6,164 3,708 2,456 3,206.5 31,32.91 2,001.5 2,075.089 0.03727

Cardiac fibroblasts 4,679 2,941 1,738 2,389 2,394.47 1,420.5 1,415.027 0.8544

Cardiac myocytes 4,679 2,941 1,738 2,520 2,516.10 1,483 1,486.902 0.8984

NOTE.—Genes with Z score higher than 1 are considered highly positive Z and the ones with Z score lower than �1 are studied as highly negative Z.

FIG. 4. Z scores of genes in and out of lamina domains across six tissues. All pairwise comparisons are highly significant (before multitest correction,
Mann–Whitney U test P< 10�9 except brain P = 4� 10�4). Z score of the genes on Lamina domains are shown with boxplots in red and the rest
are in green. Genes with very high or very low Z are excluded from the plot as outliers to improve presentation but have been included in Mann–
Whitney U test.
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activating histone marks in human compared with other pri-
mates are associated with upregulation or downregulation of
clusters in human lineage. To address this, we looked for
evidence of H3K4me3 peaks with 1.5-fold gain or depletion
in human prefrontal neuron samples compared with chimps
and macaques (Shulha et al. 2012), in Z+ and Z� clusters in
brain. We found that while Z+ clusters are significantly en-
riched in gained H3K4me3 peaks in both female and male
compared with Z� clusters, Z� clusters are significantly en-
riched in deplete H3K4me3 peaks compared with Z+ clusters
only in clusters found in female brain and not males (supple-
mentary tables S4a and b, Supplementary Material online).

Genes with Between–Tissue Concordance in
Expression Change Are Common and Clustered

Earlier, we have considered each gene’s expression change in
each tissue independently. Is it, however, the case that a gene
upregulated in one tissue is also upregulated in other tissues
or is the effect tissue specific? For those genes showing across-
tissue concordance in expression change, do we find that
their neighbors also tend to show across tissue concordance?
That is, if a gene is up- or down-regulated in all tissues, do the
neighbors also show concerted change across all tissues in the
same direction as the focal gene?

To ask whether genes tend to show concerted change
across all tissues, we start by analysing the six male tissues
(as these have multiple replicates making the data more
robust). For each gene we then convert the Z score into a
simple classification (Z4 0 = +1; Z<0 =�1), leaving Z = 0
class as is. We then consider the sum of these scores for
each gene (Z sum). At the limit genes may be downregulated
in all tissues compared with the ancestor (Z sum =�6) or
upregulated in all (Z sum = +6). We compare the frequencies
of Z sum against a null derived from randomizations in which
we preserve the sum number of Z+, Z�, and Z = 0 seen in
each tissue. We observe a great excess of incidences of con-
certed change, meaning an excess of more extreme scores
(�2 = 12,409.04, df = 12, P << 0.01; supplementary fig. S3,
Supplementary Material online). Indeed, we find 6-fold
more genes showing concerted change across all tissues
than expected under a null in which the Z score in any
given tissue is independent of that in any other tissue
(table 13). We conclude that there is a strong tendency for
change in expression of a given gene to be in the same direc-
tion across multiple tissues.

Those genes showing concerted evolution across all tis-
sues belong to an eclectic mix of Gene Ontology (GO) terms
including sensory perception (for positive concerted Z genes)

and muscle development regulation (for negative concerted
Z genes), the logic of which is not transparent to us (supple-
mentary tables S5a and b, Supplementary Material online).

We can also ask about the expression profile of genes that
show high mean Z scores. We consider four different metrics
of expression, these being expression breadth, peak expres-
sion, mean expression level (in the tissues within which the
gene is expressed), and expression skew (tau) (for definitions
see Materials and Methods). We find that genes with a high
mean Z score are more broadly expressed (�= 0.14), more
highly expressed (�= 0.39), have higher maximal expression
(�= 0.38), and have a low degree of skew (i.e., more evenly
expressed across tissues) (�=�0.13) (in all cases P< 10�14).
In many regards, these results are to be expected as high Z
genes are more likely to be highly expressed genes as Z is in
part the difference between current and ancestral state and
those with the highest current state are likely to be Z4 0.
Consistent with the Z+ concerted clusters being housekeep-
ing/highly expressed clusters, in most tissues Z+ clusters are
shorter and hence denser (although the reverse is observed in
clusters in brain), supplementary figure S4 and tables S3a and
b, Supplementary Material online.

To ask whether genes with concerted expression evo-
lution across tissues (all + or all�) are themselves clus-
tered, we ask whether their neighbors are similarly
concerted. To this end we identify all genes that show
concerted change across all tissues either with positive Z
or negative Z (absolute Z sum = 6). We then ask how often
we find clusters of such genes (of the same sign). That is,
how often do we find two concerted genes of the same
sign together, how often we find triplets, etc. We compare
these numbers to those observed in simulations in which
the position of concerted genes is randomized. We find
strong evidence that concerted genes clusters occur more
than expected by chance (table 14). This suggests a strong
principle of clustering of genes that uniformly change
expression in the same direction across multiple tissues.
Supplementary figure S5, Supplementary Material online,
provides some examples.

Tissue-Specific Upregulation Affects Neighbors and Is
Common in Cerebellum

If genes that are evolutionarily up- or downregulated across all
tissues in humans cluster, do we also see that those showing
tissue-specific evolutionary increase tend to sit next to genes
showing evolutionary increase in the same tissue? To address
this we consider those genes which, in males, show strong
(Z4 1) increase in evolutionary change in one tissue alone,

Table 13. Observed Number of Concerted Genes Is Higher than Expected.

Proportion in: Expected Proportion Expected Number Observed Number v2 P-Value

Brain Cerebellum Heart Kidney Liver Testis

Z+ 0.4916 0.49996 0.4999 0.4999 0.4999 0.4999 0.015356 200.0482 1216 5159 <<0.001

Z- 0.4804 0.49996 0.4999 0.4999 0.4999 0.4999 0.015006 195.4874 1165 4808 <<0.001

NOTE.—Concerted genes are either Z+ or Z� across all six tissues. So the expected number is the mean expectation of the number of concerted genes against a null of
independent evolution in all tissues. The total number of genes included in this analysis is 13,027.
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showing zero or negative Z in all others. This definition allows
recognition of very few genes (170) but suggests the cerebel-
lum to be a hotspot for such change (supplementary table
S6a, Supplementary Material online). Given the low sample
size, we relax the definition to include genes which are Z4 1
in one and only one tissue, with Z<1 in all others. Henceforth,
these we will refer to as tissue-specific upregulated (TSU)
genes. Analysis of these provide a striking result, namely
TSU genes in cerebellum alone are much common than
TSU genes in other tissues (supplementary table S6b,
Supplementary Material online), as indeed are the more
strictly defined tissue-specially upregulated genes. We identi-
fied 1,230 such genes in cerebellum while only 39 genes show
brain-specific upregulation. This we suggest agrees with the
recent finding that the cerebellum is a focus of evolution
within the primates (Barton and Venditti 2014).

Genes showing tissue-specific upregulation, in contrast to
those showing coordinated change across multiple tissues,
tend to be in domains of low gene density (the number of
genes in �100 kb of focal gene is low compared with coor-
dinated ones, Mann–Whitney U test P-value = 1.26 E�43,
supplementary fig. S6, Supplementary Material online). This
density effect enabled us to compare the local Z similarity for
the genes with at least one neighbor closer than 100 kb
against those whose closest neighbor is further than 100 kb
(of which there is an appreciable number). As shown in sup-
plementary table S6c, Supplementary Material online, for the
genes with a neighbor in 100 kb, the number of focal genes
having a Z4 0 (in the focal tissue) closest neighbor is more
than expected by chance (�2 = 68, df = 5, P<< 0.001).
Indeed in all tissues the number of incidences where the
nearest neighbor shows upregulation in the tissue of the
focal gene is greater than expected, the deviation being sig-
nificant in four of six tissues. For the genes lacking a close
neighbor (supplementary table S6d, Supplementary Material
online), the trend is mixed but the overall�2 statistic is weakly
significant (�2 = 12.4, df = 5, P< 0.05). This, however, is
mostly owing to two tissues showing a strong dearth of Z+
genes in the vicinity of the TSU genes. That we could not
detect an excess of Z+ genes outside of 100 kb limit suggests
that many tissue-specific change genes are relatively insulated
in their effects (compared with what is seen overall), possibly
mediated by low gene density.

While earlier we asked merely if the neighbors have an
excess of incidence of Z4 0 in the tissue concerned, we
can also ask how many TSU genes have a TSU neighbor
(Z4 1), with that upregulation being in the same tissue
(i.e., do we see clusters of tissue-specific upregulation).
While no TSU gene has any TSU neighbor in the same
tissue in brain and testis, in cerebellum there are 128 genes
whose closest downstream neighbor also exhibits cerebellum
tissue-specific upregulation. This is not more than expected
by chance (one-tailed Monte Carlo simulation keeping the
same number of TSU genes in each tissue and randomizing
gene order, P 4 0.05; supplementary table S6e,
Supplementary Material online). More generally, we see no
evidence that TSU genes cluster in any tissue (supplementary
table S6e, Supplementary Material online) and, through com-
bining individual P-values across tissues with Fisher method,
we find no overall support for the hypothesis of TSU cluster-
ing (�2 = 15.84, df = 12, P-value 4 0.1).

No Evidence for Unusual Expression Change in the
Vicinity of the Human Chromosome 2 Fusion Event

Earlier, we have considered trends en masse. Close scrutiny of
some forms of gross chromosomal change suggest that genes
neighboring chromosomal disruption sites tend to have al-
tered gene expression (Milot et al. 1996; Dillon et al. 1997;
Kleinjan and van Heyningen 1998; Kleinjan and van
Heyningen 2005; Harewood and Fraser 2014). Do we see
any evidence of this on the broader evolutionary scale? To
address this we consider the genes in the vicinity of the
human chromosome 2 fusion event.

Human chromosome 2 is fusion of two chromosomes
present in the great apes, chimp included (Miller and Reis
1982). The fusion zone is reported to be in the vicinity of
2q13-2q14.1 (Fan et al. 2002). Via the Ensembl web browser
(Flicek et al. 2014) under comparative genomic mode, we
determined that human gene ENSG00000146556 was in the
vicinity of the fusion boundary, its neighbors in chimp being
ENSPTRG00000014555 on chromosome 2b in one direction
and ENSPTRG00000012388 and ENSPTRG00000012383 on
chromosome 2a in the other direction. We then asked
whether the mean Z for genes in proximity to this site were
in any manner unusual. To this end we considered a 1 MB
window upstream and downstream of the fusion sites and
considered Z for all genes within this domain. As expected, in
one direction there are relatively few genes, this correspond-
ing to the ancient telomeric end of one of the fusion
chromosomes. The mean Z score for genes in this window
is no different to zero (mean Z = 0.002, SD = 0.396), suggesting
that this is not a zone associated with either up- or downreg-
ulation (supplementary fig. S7, Supplementary Material
online).

Sex-Biased Gene Expression Change Is Clustered

As we have, for several tissues, change in expression data in
both males and females, we can ask, for any given gene,
whether the change in expression in one sex correlates with
that in the other sex. Under a null of no change in the degree

Table 14. Monte Carlo Simulation’s P-Value and the Number of
Clusters of Concerted Genes of the Same Direction of Evolution of
Expression Are Shown by Cluster Size.

Z Score
Sign of
the Cluster

Randomization P-Values Per Number of Genes
in Clusters/Number of Clusters of This Size

2 3 4 5 6

Positive 9.999E�05/137 9.999E�05/29 9.999E�05/9 0.0059/2 0.0158/1

Negative 9.999E�05/137 9.999E�05/26 9.999E�05/8 1/0 1/0

NOTE.—Number of Z+ and Z� concerted genes are kept unchanged, but their order
has been randomized, this is repeated for 1,000 iterations. Concerted gene clusters
are found, and the number of occurrences of each cluster is compared with ob-
served number of clusters of specific number of concerted genes. If the number is
the same or exceeds the observed number of clusters of specific size, Monte Carlo
counter is incremented. At the end of the simulation, P-value is calculated.
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of sex bias in expression, such a check also provides an inter-
nal consistency check for our mode of analysis and the data.
Indeed, as for female tissues we have only one sample, and it
might be that data from females are too noisy to be depend-
able. We find a strong correlation, on a gene-by-gene basis for
Z in males in given tissue and Z in females for the same tissue
(table 15). The correlation stays significant when zero Z score
(after correction) genes are left in (supplementary table S7,
Supplementary Material online). This provides support for
the hypothesis that the dominant trend in change in gene
expression is not sex biased.

By considering the standardized residuals from orthog-
onal regression between the male and female Z scores, we
can also obtain information on the extent of sex bias in
the evolution of gene expression. Note this is not the same
as the degree of sex bias, but rather the degree of change
in sex bias. We can then ask whether the degree of change
in sex bias is also nonautonomous. To this end, we con-
sider the correlations as mentioned earlier. For each focal
gene, we consider the correlation between residuals for a
focal gene and its nearest downstream neighbor, between
the focal gene and its two nearest neighbors (one up-
stream one down) and between the focal gene and the
mean of all neighbors within 100 kb of the focal gene. In all
examples we find a significant and positive correlation
indicating the sex-biased expression change also occurs
in a clustered mode (tables 16–18). In 6 of 8 nearest neigh-
bor comparisons, the effect is more pronounced for over-
lapping genes. The genomic sizes of the clusters of genes
with correlated residuals is varied across tissues, starting
with cerebellum and heart clusters below 50 kb, going up
to 100 kb in brain and exceeding 200 kb in kidney (fig. 5).

These results support the hypothesis that the extent of
change in sex bias is also genomically regionalized. This is
further supported by the finding that when we score residuals
as positive or negative states, we again find fewer switches in

state than expected by chance, implying clustering (P from
randomisation, brain P = 0.0009; cerebellum P = 0.01; heart
P = 0.007; kidney P = 0.001).

The earlier analysis ignores those instances where Z is zero
(before median correction) for a gene in either sex. This may
be biasing results as the genes with Z = 0 in one sex, but not
the other, are sex biased in their change of expression. This
makes little difference to results (supplementary tables S8a–c,
Supplementary Material online).

No Evidence That the X Chromosome Is Enriched for
Genes Changing Sex Bias

With the same data we can also ask whether another form of
clustering is seen, i.e., chromosomal scale clustering.
According to Rice’s hypothesis (Rice 1984) the X chromo-
some should be a hotspot for sex-biased gene expression
change. He postulates that genes with sexually antagonistic
fitness effects can be more likely to spread if on a sex chro-
mosome. The spread of such alleles creates the context for the
spread of modifiers that limit the expression of the deleterious
allele in the sex in which the effect is deleterious, i.e., modifiers
of sex-specific change in expression. Hence sex biased gene
expression change is expected to be more pronounced on the
X chromosome than on autosomes. This can mean both the
evolution toward male-biased and female-biased gene
expression.

Given that we have no strong prior on the direction of sex-
biased change on the X, we consider for all genes the modulus
of the degree of sex-biased change. We then ask whether
these values are different for X than for autosomes. We find
no evidence for a difference (Mann–Whitney U test, brain
P-value = 0.4906; cerebellum P-value = 0.8944; heart
P-value = 0.9374; kidney P-value = 0.7523). In addition we

Table 15. Spearman Correlation between Female and Mean of Male
Z Scores Per Tissue.

Tissue q P-Value

Brain 0.52967 <<0.0001

Cerebellum 0.32532 <<0.0001

Heart 0.45401 <<0.0001

Kidney 0.43073 <<0.0001

Table 16. Spearman Correlation between Sex Bias Standard Residual
of Standard Major Axis Estimation between Z of Male and Female for
a Focal Gene and Standard Residual of Its Nearest Downstream
Neighbor.

Tissue Nonoverlapping
P-Value

Nonoverlapping
q

Overlapping
P-Value

Overlapping
q

Brain 0.00018 0.03995 0.00325 0.10407

Cerebellum 0.03109 0.02304 9.10E�06 0.15636

Heart 1.42E�05 0.04638 8.04E�05 0.13913

Kidney 6.95E�19 0.09465 0.01206 0.08883

NOTE.—Incidences significant after Bonferroni testing are shown in italic.

Table 17. Spearman Correlation between Standard Residual of
Standard Major Axis Estimation between Z of Male and Female for
a Focal Gene and Mean Standard Residual of Its Two Nearest
Neighbors.

Tissue Nonoverlapping
P-Value

Nonoverlapping
q

Overlapping
P-Value

Overlapping
q

Brain 1.46E�05 0.05452 0.00281 0.07649

Cerebellum 0.01433 0.03082 6.07E�07 0.12738

Heart 4.50E�07 0.06346 3.05E�08 0.14127

Kidney 7.02E�23 0.12348 4.32E�06 0.11740

NOTE.—Incidences significant after Bonferroni testing are shown in italic.

Table 18. Spearman Correlation between Standard Residual of
Standard Major Axis Estimation between Z of Male and Female of
the Focal Gene and the Mean of Standard Residual of All Its
Neighbors within 100 kb of the Focal Gene.

Tissue Spearman P-Value Spearman q

Brain 4.00E�08 0.04817

Cerebellum 0.00848 0.02310

Kidney 1.71E�39 0.11504

Heart 1.87E�05 0.03755

NOTE.—All incidences are significant after Bonferroni testing.
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can ask about the 5% of genes with the most extreme change
in sex bias (the 5% with the highest modulus of residual
score). Are these more commonly found on the X chromo-
some? We find no evidence to support this proposition either
(supplementary table S9, Supplementary Material online). We
conclude that we see no evidence that the X chromosome is a
hotspot for sex-biased gene expression change. However, if
instead we consider the change in expression of genes in the
testis, we do find that X-linked genes show a different median
Z compared with autosomal genes. Considering only those
genes with expression 4 0 in the ancestor, the median Z for
X-linked genes is 0.15, while for autosomes it is �0.012
(Mann–Whiney U test, P = 0.00023). In no other tissue is
the median Z on the X greater than the median Z on the
autosomes.

Discussion
Here we have presented evidence that gene expression
change, at least in humans, occurs on a cluster-by-cluster
basis, such that the expression change of any given focal
gene predicts the expression change of genes in its vicinity
in any given tissue. The result is insensitive to the metric of
expression change. Moreover, many genes show coordinated
changes in expression across multiple tissues and in the same
tissue in different sexes. Genes that show coordinated expres-
sion changes across multiple tissues tend to sit next to other
genes showing similar coordination. This suggests that a dom-
inant mode of expression change evolution may be nothing
more than a switch of a chromosomal block to a state of
permanently open (or predominantly closed) chromatin in
multiple tissues (or open/closed longer in multiple tissues),
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FIG. 5. The extent of local correlation in sex-biased expression change for four tissues. Method is the same as that for figure 3, excepting that here we
employ standardized residuals of the orthologous regression on Z between sexes (rather than Z). We consider all focal genes and the correlation
between residuals of Z scores for these genes and the nearest downstream gene on the same chromosome a minimum of x base pairs away. Correlations
significant at the 0.05 level are shown in red, otherwise in blue. The blue horizontal lines indicate 1.96 SD limits determined by randomization, with the
black line indicating mean of null expectation (which should be around zero).

1760

Ghanbarian and Hurst . doi:10.1093/molbev/msv053 MBE
 at D

eutsche Z
entralbibliothek fuer M

edizin on O
ctober 27, 2015

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv053/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv053/-/DC1
http://mbe.oxfordjournals.org/


thereby causing increases or decreases in expression of spans
of genes in all circumstances.

Gene density effects we suggest might in addition also be
relevant. If much of the expression change is owing to local
chromatin modification, we might expect that domains of
high gene density are more coordinated in their expression
change, simply because the chances that a local change to one
gene might affect another would be greater. Such a model is
consistent with our finding that genes showing tissue-specific
upregulation and that have no gene neighbor within 100 kb
do not affect expression of their nearest (over 100 kb)
neighbor, while other genes in high density domains do. If
upregulation of one gene in a zone of high gene density affects
the neighbors whose upregulation affects the neighbors on
and so forth, this might in turn generate self-propagating
domains of expression change. It is notable then that genes
showing increased expression across multiple tissues tend to
be in domains of high gene density.

Why gene expression for the focal gene changes is unclear,
although we found no evidence for a coupling with chromo-
somal alternations (i.e., in the chromosome 2 fusion event).
While the precise mechanisms of nonautonomous evolution
are unclear, the form of the curves relating genomic distance
to correlation in Z score, suggest much more profound effects
in immediate vicinity, a conclusion supported by the stronger
correlations seen for overlapping genes. We suggest that there
may thus be more than one mechanism at play. Perhaps in
the immediate vicinity of a gene, expression of one gene di-
rectly impacts the expression of its neighbors (cf. the ripple
effect [Ebisuya et al. 2008]), while over broader spans
(4 100 kb), a more generic chromatin opening/closing and
self-propagation mechanism (Batada et al. 2007; Gierman
et al. 2007) may be more relevant. Either way, our results
suggest that a promoter-focused concentration on the
causes of expression change (Tirosh et al. 2009; Rosin et al.
2012; Wittkopp and Kalay 2012; Yang et al. 2014) is likely to
provide too restricted a view of expression change viewed
more globally, at least within primates.

While we detected expression change clusters defined on
an intrachromosomal scale, which for the most part is not
predicted by population genetical theory, we did not observe
a form of clustering that we had expected from such theory.
Rice’s theory (Rice 1984) would suggest that X-linked genes
should be prone to changes in sex-biased gene expression;
however, we did not detect this for expression in tissues pre-
sent in both sexes. One possible explanation for this might be
that the tissues examined may not be those most likely to be
subject to the strongest sex-biased gene expression. Indeed,
testes show a large increase in Z for X-linked genes compared
with autosomal genes, potentially compatible with Rice’s
model (note this is not change in degree of sex bias as
there is no female testicular expression to compare it with).
The data thus accord with a model in which for nonsex-
specific tissues the degree of sex-biased change in gene ex-
pression is a largely neutral process and thus outside of the
domain of Rice’s hypothesis.

More generally, given the extent to which one gene’s ex-
pression change affects that of the neighbors, it is simplest to

suppose as a null model that much of the expression change
we observe is neutral and what might be called expression
“piggybacking.” That is to say, the upregulation of one gene
may be selectively favored but, because its upregulation in-
creases the chances that the neighbors are upregulated, the
spread through the population of the focal heritable expres-
sion change causes expression divergence (from the ancestral
state) of near neighbors of that focal gene. The expression
change of the neighbours need not be the focus of selection
but rather a necessary consequence of the change to the focal
gene.

Expression piggybacking may be considered an analog of
genetic hitchhiking, in so much as it suggests correlated
changes at genomically neighboring sites. Piggybacking is dif-
ferent, however, in so much as it does not require linkage
disequilibrium between alleles at closely linked sites. Indeed, in
piggybacking there need only be one allele affecting the ex-
pression of the focal gene while the neighboring genes can, in
principle, be genetically uniform across the population.
Nonetheless, the flanking genes will change, over evolutionary
time, their expression profile, piggybacking on the heritable
expression change at the focal allele. Alternatively put, esti-
mation of the net selective impact, if any, of any mutation
affecting the expression of any given gene, needs also to factor
in the effects this focal expression change has on the expres-
sion of neighbors as well. Our data are broadly consistent with
expression piggybacking, possibly largely selectively neutral,
being a fundamental cause of expression divergence in
primates.

Materials and Methods

Estimation of Z Scores

Gene expression data were obtained from Brawand et al
(2011). We used expression values reported in
NormalizedRPKM_ConstitutiveAlignedExons_Primate1to1-
Orthologues.txt and extracted loci and strand information
from Human_Ensembl57_TopHat_UniqueReads.txt also pro-
vided in the supplementary materials of the relevant paper.
This provides RPKM figures for 13,027 genes in six tissues
across five primate species. To determine the change in
gene expression between current levels in humans and that
seen in the human–chimp common ancestor we employed
BayesTraits (Pagel et al. 2004). The assumed phylogeny and
branch lengths are the same as those employed by Brawand
et al. (2011).

BayesTraits was run in the following manner. Normalized
RPKM, as provided by Brawand et al. (2011), were passed to
BayesTraits as measures of gene expression. For each gene,
mean of normalized RPKM values across different individuals
in Human was calculated separately for male and female
samples. Also if more than one male or female sample is
available in any of the tissues in chimpanzee or any of the
outgroups, their mean is computed and passed to
BayesTraits, otherwise a single expression value was used.
To find the estimated gene expression level in the ancestor
of human and chimpanzee, for each gene in each tissue,
BayesTraits program was run twice, first to build the

1761

Correlated Evolution in Gene Expression . doi:10.1093/molbev/msv053 MBE
 at D

eutsche Z
entralbibliothek fuer M

edizin on O
ctober 27, 2015

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv053/-/DC1
http://mbe.oxfordjournals.org/


estimated gene expression tree for males and second for
female samples. Each time, the primate phylogenic tree and
means of normalized RPKM of the gene in human and also
its orthologous genes in chimpanzee and three primate
outgroups (gorilla, orangutan, and macaque), in corre-
sponding gender, are passed to BayesTraits, to build the
estimated gene expression model. BayesTraits employs
Markov chain Monte Carlo and maximum likelihood to
find the posterior distribution of this model and estimate
the level of expression in this tree’s middle nodes (Pagel
et al. 2004). Through examination of the convergence
trends of the BayesTraits output, we considered that the
final 10% of BayesTraits estimates would be robust. From
this sample we estimate both the mean (Ea) and variance
(Va) in the estimation of the human–chimp ancestral state.
Relaxation of the 10% cutoff makes no important differ-
ence to results (data not shown).

These simulations were run independently for each gene,
for each tissue in each sex. If the mean expression of given
gene, in given tissue in a given sex is Ecurrent, or Ec in abbrevi-
ated form, and its variance is Vc, if estimable, while that for the
ancestral condition is Ea and Va, then we can define the degree
of expression divergence in human lineage from human–
chimp ancestor as a Z score:

Z ¼
Ec � Eaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vc þ Va

p

This metric compares the extent of difference between mean
current expression level and ancestral level, scaled by the
degree of variation both in current estimates (expression
noise or measurement error) and the degree of uncertainty
in the ancestral state’s estimation. A positive Z implies an
increase in gene expression since the ancestor. In part the
defense for our metric is the same as the defense for any
application of a Z score, namely it measures difference in
standard deviation units. That is, a gene with largely variable
expression across individuals or high fluctuation and uncer-
tainty in estimation of expression in ancestor would have a
lower Z score compared to a gene with similar but steadier
level of current expression and/or one with similar but more
stable estimation of ancestral level of expression. However,
another part of the defense is that in our model, inspired by
the ripple hypothesis, increased opening of chromatin can
lead to increased spurious expression. Our supposition is
that this might cause an approximately constant absolute
increase in the amount of transcription in all neighbors a
given distance away, not an increase proportional to the cur-
rent level (as measured by fold change). Nonetheless to ex-
amine the possibility that results might be contingent on
metric we also consider 1) a digital representation (increase
or decrease since ancestor) and 2) fold change. Note too that
we are not concerned with whether our metric calls signifi-
cance in gene expression change as most of the gene expres-
sion in our model is neutral drift owing to ripple effects.
Rather, we wish to present a quantitative variable that cap-
tures the absolute amount of expression change factored in
standard deviation units.

For each tissue in each sex we assume that the median
expression change must be zero. This is equivalent to assum-
ing an absence of net increase or decrease in overall expres-
sion levels. This required a minor adjustment of Z scores for all
genes in all tissues. If the median Z in any given tissue in a
given sex is M, then we defined modified Z as Zmod = Z – M.
This forces all tissues to have a modified median of zero and
as many genes increasing expression as decreasing (this being
approximately equivalent to an assumption that the net
transciptome size is no different; hence, for every gene in-
creasing expression there should be one decreasing expres-
sion). All analyses were performed on Zmod. Henceforth, we
shall refer to Z, for convenience, where Zmod is what we are
employing. In practice the correction makes little or no dif-
ference as 1) the correction is usually very small and 2) many
of our statistics are rank order based and so unaffected by the
modification. We note that our method has the advantage
that it largely eliminates any RNAseq amplication biases (e.g.,
owing to GC content) from affecting our metric of expression
change. This is because nucleotide content is almost
unchanged between human and chimp, and hence any bias
in amplification of a given transcript is likely to affect human
and chimp equally. By considering only the change from the
ancestor we thus exclude amplification biases from derivation
of Z. As evidence for this, the mean correlation, across all
tissues, between Z and the change in GC between human
and chimp is indistinguishable from zero.

Chromatin Data

For a few human cell lines, ChIP-seq histone methylation data
produced by University of Washington is available through
ENCODE’s portal (Bernstein et al. 2012; Gerstein et al. 2012;
Rosenbloom et al. 2012). We could approximate whole tissue
histone methylations profile by matching the most abundant
cell lines in heart and cerebellum to three of the cell lines
available in ENCODE. Among many cell types composing
heart, Cardiac fibroblast and cardiac myocyte (muscle cells
in heart) are consequently mostly abundant ones.
Furthermore, astrocytes are the most numerous cell type in
the central nervous system (Chen and Swanson 2003; Tsai
et al. 2012). Hence, HAc, an astrocytes-cerebellar cell line, was
used to approximate histone methylation profile in cerebel-
lum (Tower and Young 1973).

To do the histone methylation analysis, H3K4me3 peak
data were downloaded as an activating histone mark
(Santos-Rosa et al. 2002; Sims et al. 2003; Martin and Zhang
2005; Greer and Shi 2012) for above cell lines. Then Z score
positive and negative genes overlapping one or more
H3K4me3 peak(s) were found using Bedtools (Quinlan and
Hall 2010). Due to the histone mark protocol used in
ENCODE, each experiment was repeated twice and peak
data are reported separately for each repetition. So here we
report the average number of Z score positive or negative
genes overlapping one or more peaks across these two re-
peated peak data sets.

We also compared Z score positive and negative clusters
with regard to gain and depletion of H3K4me3 peaks in
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humans compared with chimps and macaques. To do this,
we took 885 H3K4me3 peaks which were shown to have
1.5-fold higher human-specific gain in human samples com-
pared with macaque and chimpanzee samples as shown by
Shulha (2012). Intersect command from bedtools was then
used to find the clusters overlapping a gained H3K4me3 peak.
An ad hoc script was used to count the number of Z+ and Z�
clusters with at least one gained peak. Similarly we also com-
pared the number of Z+ and Z� clusters with evidence for at
least one H3K4me3 depleted peak using 177 H3K4me3 peaks
with human-specific depletion which had at least 1.5-fold
lower tag density in human samples compared with chimps
and macaques as shown by Shulha (2012).

GO Analysis

Is there a functional link between the genes that show the
same sign of expression change across all tissues (concerted
genes)? Is there a functional clue to link the genes with ele-
vated changed expression across all tissues? To determine
this, the concerted genes (same profile of change across all
tissues) are divided into two sets:first the ones with elevated
expression in human lineage compared with human–chimp
ancestor across all tissues in male samples and second the
ones with reduced expression than the estimated expression
in the ancestor. We just used male sample tissues for this
analysis as there are more repeats available for these, also as
shown, their expression is more stable and less noisy. Doing
this, we found 1,244 concerted Z score positive genes and
1,053 concerted negative ones. Then GO term enrichment
analysis was performed on these two sets, using GOrilla (Eden
et al. 2009), to find the enriched GO functions and processes.

Expression Measures

To address the correlates of Z we also ask about a series of
expression measures, these being breadth, mean rate, peak
rate, and tau. For a gene to be considered as being expressed
in a given tissue in a given species we required that the mean
across replicates for that tissue to be more than at least 2
RPKM. If it was less than 2, it was set to zero for that tissue.
Breadth is defined as the proportion of tissues within which a
gene is expressed. To prevent nonindependence between rate
and breadth, we defined rate as the mean rate of expression
of that gene across all tissue within which it is expressed (i.e.,
at rate 4 2). Peak rate is the maximum expression level
considered across all tissues. Tau is a measure of skew in
expression and is defined as:

� ¼

Xn

j¼1
ð1�

logðejÞ

logðemaxÞ
Þ

n� 1

where there are n tissues, the expression in any one being
ej and the maximal for that gene across all tissues is emax. A
gene with very highly skewed expression (very high in only
one tissue) take a high value of tau (limit approaching 1)
while those expressed uniformly take a low value (limit
zero).

hmC and mC Assays
Base resolution map of hydromethylome in prefrontal cortex
has been produced by Wen et al. (2014). First shown in
Bacteriophage, hmC is able to turn genes on or off (Wyatt
and Cohen 1952; Dahl et al. 2011). Wen et al. (2014) has
recently shown 10-fold increase in hmC in adult prefrontal
cortex compared with fetal. Also, hmC correlates positively
with gene expression while mC correlates negatively with
gene expression (Colquitt et al. 2013; Wen et al. 2014).
Furthermore, there is disparity between hmC and mC enrich-
ment on sense and antisense strands, hmC being enriched on
sense and mC on antisense strands (Peric-Hupkes et al. 2010).
To find out if they correspond with change in gene expres-
sion, we took hmC and mC percentages as reported by Wen
et al (2014) and calculated how they correlated with Z scores
of genes in brain.

Lamina Domain Assignment

LADs originally produced by Guelen et al (2008) using Lung
fibroblast cell line, are available through UCSC’s table browser
for hg19. Intersect command from bedtools (Quinlan and
Hall 2010) was used to find the genes overlapping these do-
mains. For this analysis, genes with zero Z scores (prior to
modification) are not removed due to expectation of the
genes on LAD domains to be very lowly, if at all, expressed.
Then Z of genes on and off LAD domains were compared
using Mann–Whitney U test and also Brunner Munzel test, to
correct for robustness to the form of distributions.

Statistics

Where appropriate statistics were performed in R, many anal-
yses were performed using Monte Carlo simulations. In these
incidences, if N is the number of observations as extreme or
more extreme as observed and M is the number of simulants,
then the unbiased estimator of the type I error rate (what
may be regarded as an empirical P) is:

P ¼
Nþ 1

Mþ 1
:

Supplementary Material
Supplementary figures S1–S7 and tables S1–S9 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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